

EN 300 330-1/EN 300 330-2 RADIO TEST REPORT

On Behalf of

Shanghai Anviz Technology Co.Ltd Fingerprint & RFID Time Attendance Model No.: A300

Prepared for: Shanghai Anviz Technology Co.Ltd

Address : 2th Floor,4289Jindu Road,Shanghai China

Prepared By: Shenzhen Alpha Product Testing Co., Ltd.

Address 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu

2nd Road, Bao'an District, Shenzhen 518126, P.R. China

Report Number : T1861387 02

Date of Receipt : July 18, 2016

Date of Test : July 19, 2016- July 25, 2016

Date of Report : July 25, 2016

Version Number : REV0

Contents

1.	Gen	neral Information	4
	1.1.	Description of Device (EUT)	4
	1.2.	Accessories of device (EUT)	5
	1.3.	Test Lab information	5
2.	Sun	nmary of test	6
	2.1.	Test Standard description:	6
	2.2.	Summary of test result	6
	2.3.	Block Diagram	7
	2.4.	Test mode	7
	2.5.	Test Conditions	7
	2.6.	Receiver Class	7
	2.7.	Measurement Uncertainty (95% confidence levels, k=2)	8
	2.8.	Test Equipment	8
3.	Trar	nsmitter Carrier Output Levels	10
	3.1.	Limit(ETSI EN 300 330-1V1.7.1)	
	3.2.	Test Procedure	10
	3.3.	Test Result	11
4.	Perr	mitted Frequency Range of the Modulation Bandwidth	12
	4.1.	Limit(ETSI EN 300 330-1V1.7.1)	
	4.2.	Test Procedure	12
	4.3.	Test Result	12
5.	Trar	nsmitter Spurious Radiated Emission	13
	5.1.	Limit(ETSI EN 300 330-1V1.7.1)	13
	5.2.	Test Procedure	13
	5.3.	Test Result	14
6.	Duty	y Cycle (RFID)	16
	6.1.	Limit(ETSI EN 300 330-1V1.7.1)	16
	6.2.	Test Procedure	16
	6.3.	Test Result	16
7.	Rec	eiver Spurious Radiated Emission	17
	7.1.	Limit(ETSI EN 300 330-1V1.7.1)	17
	7.2.	Test Procedure	17
	7.3.	Test Result	17
8.	Pho	tos of Setup	18
a	Dho	tos of FUT	10

DECLARATION

Applicant : Shanghai Anviz Technology Co.Ltd

Manufacturer : Shanghai Anviz Technology Co.Ltd

Product : Fingerprint & RFID Time Attendance

(A)Model No. : A300

(B)Trade Name : ANVIZ

(C)Power supply: DC 5V from USB port

Measurement Procedure Used:

ETSI EN 300 330-1 V1.7.1: Electromagnetic compatibility and Radio spectrum Matters (ERM); Short Range Devices (SRD); Radio equipment in the frequency range 9 kHz to 25 MHz and inductive loop systems in the frequency range 9 kHz to 30 MHz; Part 1: Technical characteristics and test methods

ETSI EN 300 330-2 V 1.5.1: Electromagnetic compatibility and Radio spectrum Matters (ERM); Short Range Devices (SRD); Radio equipment in the frequency range 9 kHz to 25 MHz and inductive loop systems in the frequency range 9 kHz to 30 MHz; Part 2: Harmonized EN covering the essential requirements of article 3.2 of the R&TTE Directive

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. The measurement results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the EN 300 330-1 and EN 300 330-2 requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature)......

Peter Kang

Test Engineer

Approved by (name + signature).....:

Simple Guan
Project Manager

Date of issue...... July 25, 2016

1. General Information

1.1. Description of Device (EUT)

EUT Name : Fingerprint & RFID Time Attendance

Model No. : A300

DIFF : N/A

Trademark : **ANVIZ**

Power supply : DC 12V

Radio Technology : 125KHz SRD

Operation frequency : 125KHz

Antenna Type : Integrated Antenna, Maximum Gain is 0dBi.

Software version N/A

Hardware version N/A

Intend use environment : Residential, commercial and light industrial environment

Applicant : Shanghai Anviz Technology Co.Ltd

Address : 2th Floor,4289Jindu Road,Shanghai China

Manufacturer Shanghai Anviz Technology Co.Ltd

Address 2th Floor,4289Jindu Road,Shanghai China

1.2. Accessories of device (EUT)

Accessories1 : N/A

Model N/A

Input N/A

Output N/A

Accessories2 : N/A

Model N/A

1.3. Test Lab information

Shenzhen Alpha Product Testing Co., Ltd.

Building B, East Area of Nanchang Second, Industrial Zone, Gushu 2nd Road, Bao'an, Shenzhen, China

March 25, 2015 File on Federal Communication Commission

Registration Number: 203110

July 18, 2014 Certificated by IC Registration Number: 12135A

2. Summary of test

2.1. Test Standard description:

ETSI EN 300 330-1 V1.7.1: Electromagnetic compatibilityand Radio spectrum Matters (ERM);Short Range Devices (SRD);Radio equipment in the frequency range9 kHz to 25 MHz and inductive loop systems in the frequency range 9 kHz to 30 MHz;Part 1: Technical characteristics and test methods

ETSI EN 300 330-2 V 1.5.1: Electromagnetic compatibility and Radio spectrum Matters (ERM); Short Range Devices (SRD); Radio equipment in the frequency range 9 kHz to 25 MHz and inductive loop systems in the frequency range 9 kHz to 30 MHz; Part 2: Harmonized EN covering the essential requirements of article 3.2 of the R&TTE Directive

2.2. Summary of test result

CLAUSE (ETSI EN300 330)	ETSI EN300 TEST PARAMETER			
	Transmitter Parameters			
7.2	Transmitter Carrier Output Levels	PASS		
7.3	Permitted Frequency Range Of The	PASS		
7.5	Modulation Bandwidth	PASS		
7.4	Transmitter Spurious Radiated Emission	PASS		
7.5	Duty Cycle	PASS		
Receiver Parameters				
8.3	Receiver spurious emissions	N/A		

2.3. Block Diagram

1. For radiated test

EUT

2.4. Test mode

Tested mode, channel, and data rate information					
Mode data rate (Mpbs)(see Channel Frequency					
Note) (KHz)					
SRD N/A 1 125					
Note: All the final test were performed using a new battery.					

2.5. Test Conditions

	Normal Conditions	Extreme Conditions
Temperature range	15-35℃	-10°C and 55°C
Humidity range	40-75%	40-75%
Pressure range	86-106kPa	86-106kPa
Power supply	DC 5V from USB port	207V and 253V (declared by the
		manufacturer.)

2.6. Receiver Class

Receiver Class: (Subclause 4.1.1)

- Class 1 (Safety critical SRD communication media; i.e. for devices serving systems where failure may result in a physical risk to a person)
- Class 2 (Function critical SRD communication media; i.e. when a failure to operate correctly causes loss of function but does not constitute a safety hazard)

2.7. Measurement Uncertainty (95% confidence levels, k=2)

Item	MU	Remark
Uncertainty for Power point Conducted Emissions Test	2.42dB	
Uncertainty for Radiation Emission test in 3m chamber	3.54dB	Polarize: V
(30MHz to 1GHz)	4.1dB	Polarize: H
Uncertainty for Radiation Emission test in 3m chamber	2.08dB	Polarize: H
(1GHz to 25GHz)	2.56dB	Polarize: V
Uncertainty for radio frequency	1×10-9	
Uncertainty for conducted RF Power	0.65dB	
Uncertainty for temperature	0.2℃	
Uncertainty for humidity	1%	
Uncertainty for DC and low frequency voltages	0.06%	

2.8. Test Equipment

Equipment	Manufacture	Model No.	Serial No.	Last cal. Due to	Cal Interval
3m Semi-Anechoic	CHENYU	N/A	N/A	2018.01.18	2Year
Spectrum analyzer	Agilent	E4407B	MY46185649	2017.01.16	1Year
Receiver	R&S	ESPI	101873	2017.01.16	1Year
Receiver	R&S	ESCI	101165	2017.01.16	1Year
Bilog Antenna	SCHWARZBECK	VULB 9168	VULB9168-438	2018.01.18	2Year
Horn Antenna	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D(1201)	2017.01.20	2Year
Cable	Resenberger	N/A	No.1	2017.01.16	1Year
Cable	SCHWARZBECK	N/A	No.2	2017.01.16	1Year
Cable	SCHWARZBECK	N/A	No.3	2017.01.16	1Year
Pre-amplifier	НР	HP8347A	2834A00455	2017.01.18	1Year
Pre-amplifier	Agilent	8449B	3008A02664	2017.01.18	1Year
vector Signal Generator	Agilent	N5182A	MY49060042	2016.11.16	1 Year
vector Signal Generator	Agilent	E4438C	US44271917	2016.11.16	1 Year

X-series USB					
Peak and Average	Agilent	U2021XA	MY54080020	2016.11.16	1 Year
Power Sensor					
X-series USB					
Peak and Average	Agilent	U2021XA	MY54110001	2016.11.16	1 Year
Power Sensor					
Signal Analyzer	Agilent	N9020A	MY48030494	2016.11.16	1 Year

3. Transmitter Carrier Output Levels

3.1. Limit(ETSI EN 300 330-1V1.7.1)

The maximum H-field strengths under normal and extreme conditions for certain frequency bands are given in table:

Frequency range (MHz)	H-field strength limit (H _f) dBμA/m at 10 m
0,009 ≤ f < 0,315	30
0,009 ≤ f < 0,03	72 or according to note 1
0,03 ≤ f < 0,05975	72 at 0,03 MHz descending 3 dB/oct
0,06025 ≤ f < 0,07	or according to note 1
0,119 ≤ f < 0,135	0.00.00
0,05975 ≤ f < 0,06025	0
0,07 ≤ f < 0,119	42
0,135 ≤ f < 0,140	
0,140 ≤ f < 0,1485	37,7
0,1485 ≤ f < 30	-5 (see note 4)
0,315 ≤ f < 0,600	-5
3,155≤ f < 3,400	13,5
7,400 ≤ f < 8,800	9
10,2 ≤ f < 11,00	9
6,765 ≤ f ≤ 6,795	
13,553 ≤ f ≤ 13,567	42 (see note 3)
$26,957 \le f \le 27,283$	W W
13,553 ≤ f ≤ 13,567	60 (see notes 2 and 3)

NOTE 1: For the frequency ranges 9 to 70 kHz and 119 to 135 kHz, the following additional restrictions apply to limits above 42 dBµA/m:

- for loop coil antennas with an area ≥ 0,16 m² table 4 applies directly;
- for loop coil antennas with an area between 0,05 m² and 0,16 m² table 4 applies with a correction factor. The limit is: table value + 10 × log (area/0,16 m²);
- for loop coil antennas with an area < 0,05 m² the limit is 10 dB below table 4.
- NOTE 2: For RFID and EAS applications only.
- NOTE 3: Spectrum mask limit, see annex G.
- NOTE 4: For further information see annex H

3.2. Test Procedure

EUT was placed on a 0.8 m outdoor wooden table. The search antenna is placed at 3m distances from the EUT and search antenna height is from 1-4m. With the transmitter operating at continuously mode, the turntable was slowly rotated to locate the direction of maximum emission. Once maximum direction is determined, the search antenna was raised and lowered in both vertical and horizontal polarizations.

The EUT was removed from the turntable and replaced with a linearly polarized antenna connected to a calibrated RF signal generator. The RF generator was set to a measured emission frequency and the search antenna was raised and lowered to produced a maximum received reading. The generator output was increased to match the radiated emission reading measured previously, and the result expressed in dB E.I.R.P. or ERP.

3.3. Test Result

EUT: Fingerprint & RFID Time Attendance M/N:A300					
Test date: 2016-	-07-24	Test site: RF si	ite Tested by	y: Simple	
Test Conditions		CH:12	25KHz	Limit	
Test Co	onditions	(dBu	(dBuA/m)		
Temp	Volt	Value(3m)	Value(10m)		
25°C	230	11.46	-19.84		
23 C		11.28	-20.02		
-10℃	207	11.35	-19.95	66.0	
-10℃	253	11.41	-19.89	66.0	
50°C	207	11.29	-20.01		
50°C	253	11.36	-19.94		

Conclusion: PASS

Note1: The measurement distance is 3m.

Note2: According to F.2 of EN 300 330-1, the correction factor between 10m and 3m at 125KHz should be 31.3dB.

4. Permitted Frequency Range of the Modulation Bandwidth

4.1. Limit(ETSI EN 300 330-1V1.7.1)

The permitted rang of the modulation bandwidth shall be within 13.553-13.567MHz.

4.2. Test Procedure

- 1). The EUT was placed on a turn table which is 0.8m above ground plane.
- 2). The EUT was modulated by normal signal,
- 3). Set SPA Center Frequency = fundamental frequency, RBW=VBW= 100 Hz, Span =500 Hz.
- 4), Both normal test condition and extreme test condition applied

4.3. Test Result

EUT: Fingerprint & RFID Time Attendance M/N:A300					
Test date: 2016-07-24 Test site: RF site Tested by: Simple					
Test Conditions		CH:125KHz		Limit	
Temp	Volt	FL	FH	(KHz)	
25℃	230	123.56	127.38		
-10°C	207	123.56	127.38	FI. 110	
-10°C	253	123.56	127.38	FL>119 FH<135	
50℃	207	123.56	127.38	FH<133	
50°C	253	123.56	127.38		
Conclusion: PASS					

Page 13 of 28 Report No.: T1861387 02

5. Transmitter Spurious Radiated Emission

5.1. Limit(ETSI EN 300 330-1V1.7.1)

The radiated field strength of the spurious domain emissions below 30 MHz shall not exceed the generated H-field $dB\mu A/m$ at 10 m given in table:

State	Frequency 9 kHz ≤ f < 10 MHz	Frequency 10 MHz ≤ f < 30 MHz
Operating	27 dBμA/m at 9 kHz descending 3 dB/oct	-3,5 dBμA/m
Standby	5,5 dBμA/m at 9 kHz descending 3 dB/oct	-22 dBμA/m

The power of any radiated emission shall not exceed the values given in table:

State	47 MHz to 74 MHz 87,5 MHz to 118 MHz 174 MHz to 230 MHz 470 MHz to 862 MHz	Other frequencies between 30 MHz to 1 000 MHz
Operating	4 nW	250 nW
Standby	2 nW	2 nW

5.2. Test Procedure

- 1, The EUT was placed on a 1.5m high table in the chamber and turned on in continuously TX mode.
- 2, All the spurious emissions at 3m distance was measured and recorded with receive antenna in both vertical and horizontal by rotating the turntable and by lowering the receive antenna, and the spectrum analyser was set as below

RBW:100KHz VBW:30KHz

Detector mode: PK mode

Sweep time: Auto

For measuring emissions that exceed the level of 6dB below the applicable limit, the resolution bandwidth shall be switched to 30KHz and the span shall be adjusted accordingly. If the level does not change by more than 2dB, it is a narrowband emissions, if the level changes by more than 2dB, the emission is a wideband emission.

- 3, The EUT was then removed and replaced with a substitution antenna in the same position and the substitution antenna must have the same polarization with the receive antenna.
- 4, A signal which have the same frequency obtained in step 2 was fed to the substitution antenna ,the receive antenna was raised and lowered to obtain a maximum reading at the test receiver, the level of the signal generator was adjusted until the measured field strength level in step 2 was obtained, recorded the level of the signal generator.
- 5, Repeated step 4 with both antenna polarizations
- 6, The spurious emissions is equal to the power supplied by the signal generator and corrections due to the gain of the substitution antenna and the cable loss between the signal generator and the substitution antenna.

Page 14 of 28 Report No.: T1861387 02

5.3. Test Result

EUT: Fingerprin	t & RFID Time	Attendance M/	N: A300					
Test Date: 2016-	07-24	Test site: RF S	Test site: RF Site			Tested by: simple		
Ambient Temper	rature: 23°C	Relative Humi	Relative Humidity: 60%					
Test result 9KHz-30MHz								
Test Mode: 125KHzz								
Frequency	Antenna	Result	Limit M		argin	Conclusion		
(MHz)	polarization	(dBm)	(dBm)	((dB)	Conclusion		
	Н		27 dBuA/m at					
	Н		9KHz descending 3dB/oct					
	Н		(9KHz – 10MHz)					
	Н		-3.5 dBuA/m					
	Н		(10MHz –					
	Н		30MHz)					
	V		27 dBuA/m at					
	V		9KHz descending 3dB/oct					
	V		(9KHz – 10MHz)					
	V		-3.5 dBuA/m					
	V		(10MHz –					
	V		30MHz)					

NOTE: Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Report No.: T1861387 02

EUT: Fingerprir	nt & RFID Time	Attendance M/	N: A300				
Test Date: 2016	-07-24	Test site: RF S	Site	Teste	Tested by: simple		
Ambient Temperature: 23°C		Relative Humi	Relative Humidity: 60%				
		Test result	30MHz-1GHz				
		Test Mode	e: 125KHzz				
Frequency	Antenna	Result	Limit	Margin	Conclusion		
(MHz)	polarization	(dBm)	(dBm)	(dB)	Conclusion		
174.63	Н	-64.72	-54.00	-10.72	PASS		
182.39	Н	-65.83	-54.00	-11.83	PASS		
273.47	Н	-64.37	-36.00	-28.37	PASS		
436.58	Н	-62.46	-36.00	-26.46	PASS		
581.27	Н	-67.63	-54.00	-13.63	PASS		
753.34	Н	-65.35	-54.00	-11.35	PASS		
249.62	V	-63.65	-36.00	-27.65	PASS		
371.84	V	-64.72	-36.00	-28.72	PASS		
453.57	V	-63.29	-36.00	-27.29	PASS		
482.71	V	-65.53	-54.00	-11.53	PASS		
509.14	V	-65.39	-54.00	-11.39	PASS		
636.28	V	-66.91	-54.00	-12.91	PASS		

6. Duty Cycle (RFID)

6.1. Limit(ETSI EN 300 330-1V1.7.1)

In a period of 1 hour the duty cycle shall not exceed the values given in table:

Duty cycle Class	Duty cycle ratio
1	< 0,1 %
2	< 1,0 %
3	< 10 %
4	Up to 100 %

6.2. Test Procedure

- 1). The EUT was placed on a turn table which is 0.8m above ground plane.
- 2). The EUT was modulated by normal signal,
- 3). Set SPA Center Frequency = fundamental frequency, RBW=VBW= 470 Hz, Span=0 Hz, Sweep Time=80.82ms
- 4). Record the on time and off time

6.3. Test Result

The EUT is declared by manufacturer as a duty cycle ratio of up to 100%.

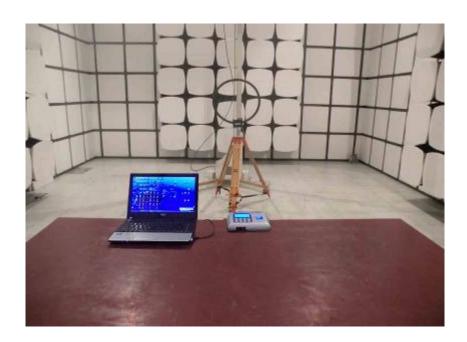
7. Receiver Spurious Radiated Emission

7.1. Limit(ETSI EN 300 330-1V1.7.1)

The spurious components below 30 MHz shall not exceed the generated H-field $dB\mu A/m$ values at 10 m according to table

Frequency 9 kHz ≤ f < 10 MHz	Frequency 10 MHz ≤ f < 30 MHz		
5.5 dBμA/m at 9 kHz descending 3 dB/oct	-22 dBμA/m		

7.2. Test Procedure


- 1, The EUT was placed on a 1.5m high table in the chamber and turned on in continuously TX mode.
- 2, All the spurious emissions at 3m distance was measured and recorded with receive antenna in both vertical and horizontal by rotating the turntable and by lowering the receive antenna, and the spectrum analyser was set as below RBW:100KHz; VBW:30KHz; Detector mode: PK mode; Sweep time: Auto
 - RBW:100KHz; VBW:30KHz; Detector mode: PK mode; Sweep time: Auto For measuring emissions that exceed the level of 6dB below the applicable limit, the resolution bandwidth shall be switched to 30KHz and the span shall be adjusted accordingly. If the level does not change by more than 2dB, it is a narrowband emissions, if the level changes by more than 2dB, the emission is a wideband emission.
- 3, The EUT was then removed and replaced with a substitution antenna in the same position and the substitution antenna must have the same polarization with the receive antenna.
- 4, A signal which have the same frequency obtained in step 2 was fed to the substitution antenna, the receive antenna was raised and lowered to obtain a maximum reading at the test receiver, the level of the signal generator was adjusted until the measured field strength level in step 2 was obtained, recorded the level of the signal generator.
- 5, Repeated step 4 with both antenna polarizations
- 6, The spurious emissions is equal to the power supplied by the signal generator and corrections due to the gain of the substitution antenna and the cable loss between the signal generator and the substitution antenna.

7.3. Test Result

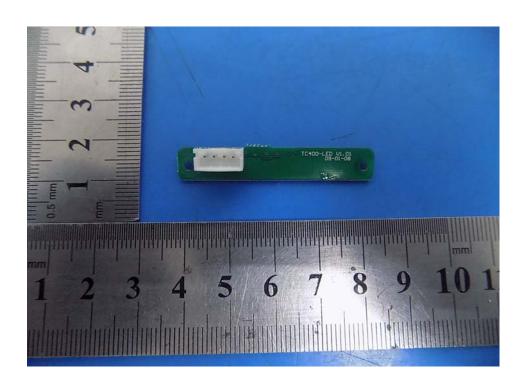
These requirements do not apply to receives used in combination with permanently co-located transmitters continuously transmitting. Co-located is defined as < 3m. in these case the receivers will be tested together with the transmitter in operating mode.

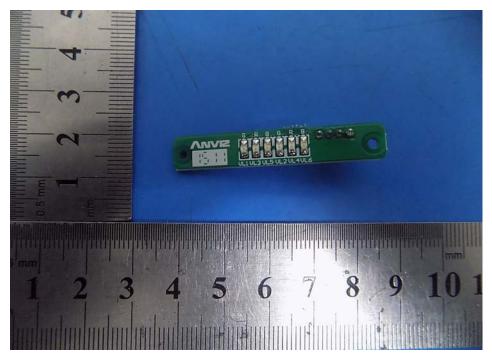
The transmitter and receiver of sample must locate with 3m. therefore, the receiver is tested with the transmitter in operation mode. The test result refers to chapter 11.

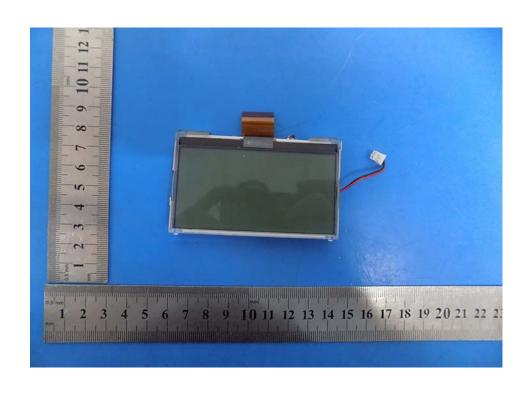
8. Photos of Setup

Report No.: T1861387 02

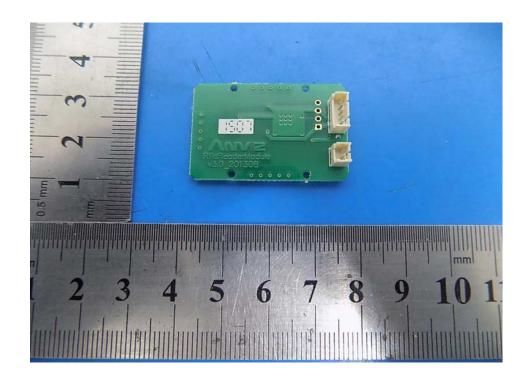
9. Photos of EUT

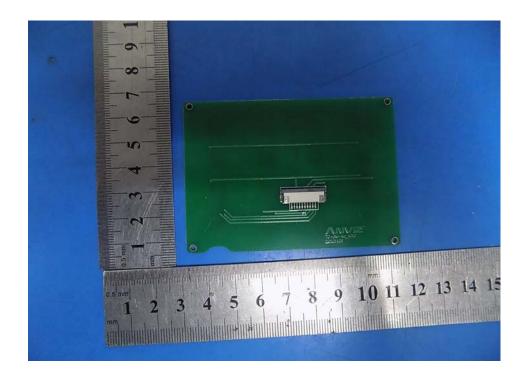


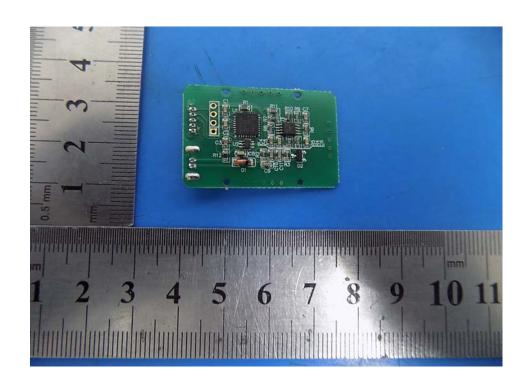


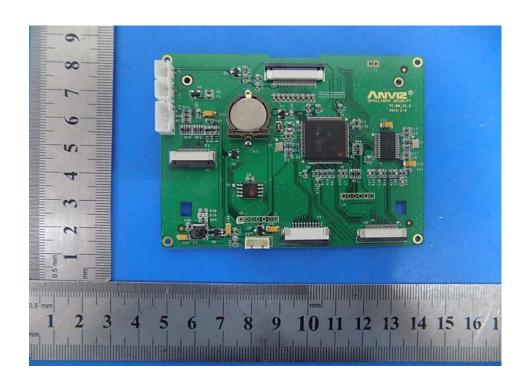


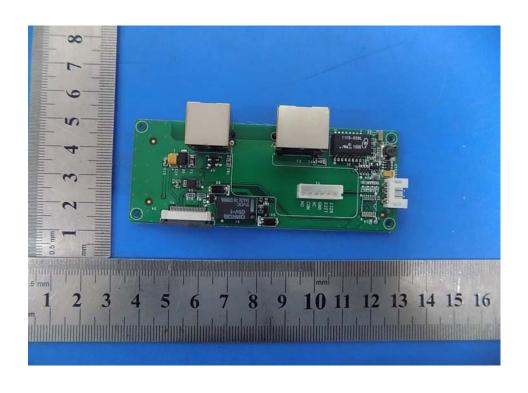


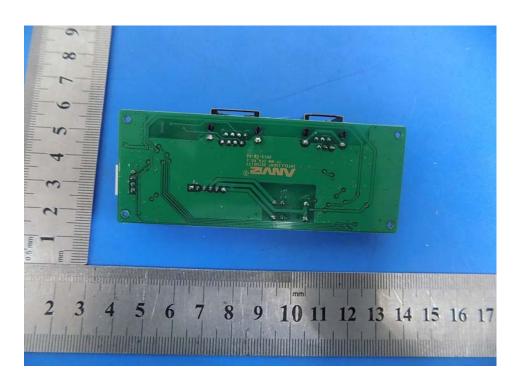


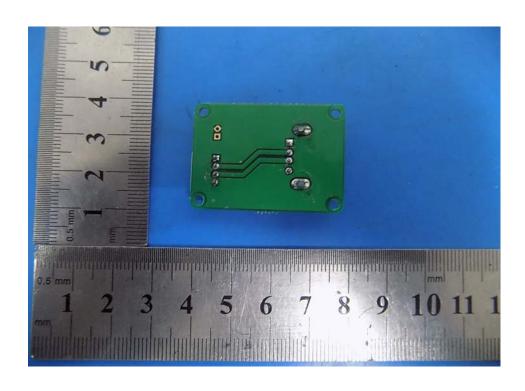


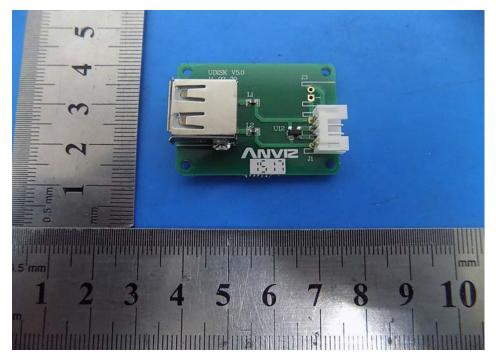


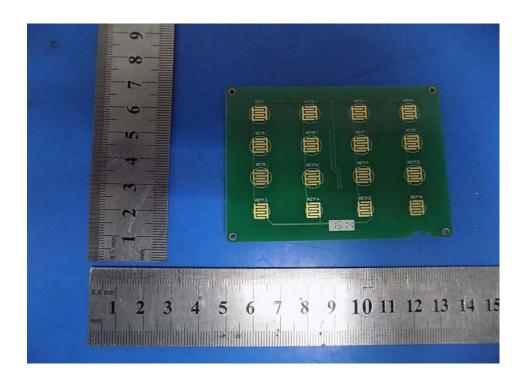


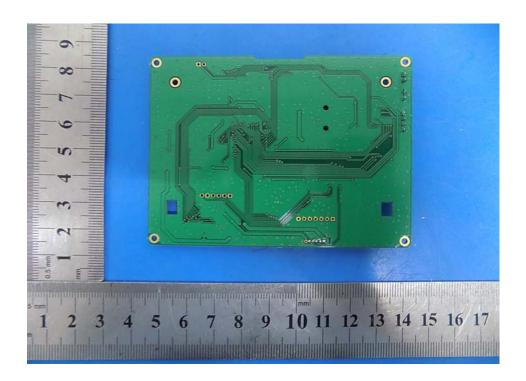

Report No.: T1861387 02

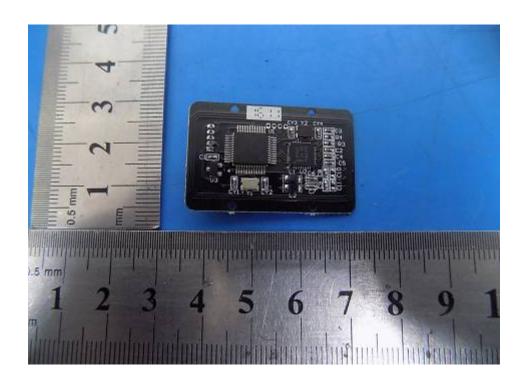














-----END OF THE REPORT-----